Ela Relationship between the Hyers–ulam Stability and the Moore–penrose Inverse
نویسندگان
چکیده
In this paper, a link between the Hyers–Ulam stability and the Moore–Penrose inverse is established, that is, a closed operator has the Hyers–Ulam stability if and only if it has a bounded Moore–Penrose inverse. Meanwhile, the stability constant can be determined in terms of the Moore– Penrose inverse. Based on this result, some conditions for the perturbed operators having the Hyers– Ulam stability are obtained, and the Hyers–Ulam stability constant is expressed explicitly in the case of closed operators. In the case of the bounded linear operators, some characterizations for the Hyers– Ulam stability constants to be continuous are derived. As an application, a characterization for the Hyers–Ulam stability constants of the semi-Fredholm operators to be continuous is given.
منابع مشابه
An Efficient Schulz-type Method to Compute the Moore-Penrose Inverse
A new Schulz-type method to compute the Moore-Penrose inverse of a matrix is proposed. Every iteration of the method involves four matrix multiplications. It is proved that this method converge with fourth-order. A wide set of numerical comparisons shows that the average number of matrix multiplications and the average CPU time of our method are considerably less than those of other methods.
متن کاملHyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay
In this paper we are going to study the Hyers{Ulam{Rassias typesof stability for nonlinear, nonhomogeneous Volterra integral equations with delayon nite intervals.
متن کاملMittag-Leffler-Hyers-Ulam Stability of Fractional Differential Equation
In this article, we study the Mittag-Leffler-Hyers-Ulam and Mittag-Leffler-Hyers-Ulam-Rassias stability of a class of fractional differential equation with boundary condition.
متن کاملEla Reverse Order Law for the Moore-penrose Inverse in C∗-algebras∗
In this paper, several equivalent conditions related to the reverse order law for the Moore-Penrose inverse in C-algebras are studied. Some well-known results are extended to more general settings. Then this result is applied to obtain the reverse order rule for the weighted Moore-Penrose inverse in C-algebras.
متن کاملHyers-Ulam stability of Volterra integral equation
We will apply the successive approximation method forproving the Hyers--Ulam stability of a linear integral equation ofthe second kind.
متن کامل